

SabreSonic Web v2012.2

Feature Brief – Custom JavaScript

Internal Only

Author: Halpern, Steven Edward

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Software version 2012

Document Edition 1.1

This documentation is the confidential and proprietary intellectual

property of the Sabre Airline Solution® business. Any unauthorized

use, reproduction, preparation of derivative works, performance or

display of this document or software represented by this document,

without the express written permission of Sabre Airline Solutions is

strictly prohibited.

Sabre Airline Solutions, the Sabre Airline Solutions logo, Sabre

Holdings, the Sabre Holdings logo, Sabre Travel Network, the Sabre

Travel Network logo, AirCentre, AirCommerce, AirVision, ASx, eMergo,

MyFares, Qik, Sabre, SabreSonic, Service360 and Virtually There are

trademarks and/or service marks of an affiliate of Sabre Holdings Corp.

All other trademarks, service marks and trade names are the property

of their respective owners.

© 2014 Sabre Inc. All rights reserved.

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

D O C U M E N T R E V I S I O N H I S T O R Y

The following information is to be included with all versions of the document.

Ver # Rev Date Originator Section # Revision

1 8/31/2012 Steven Halpern All First Draft

1.1 9/7/2012 Steven Halpern 5-discussion

of placing

component

definitions

has been

corrected.

7-function

and variable

definitions

have been

expanded.

Second Draft

1.2 5/2014 Steven Halpern 6–code

example for

Google Tag

Manager

added.

7–variable

definitions

for GTM

data layer

added.

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 1

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

Table of Contents

1. Functional Description .. 2

2. Feature Activation ... 3

3. Feature Configuration ... 3

4. Feature Translations .. 3

5. Adding a Custom JavaScript Component to a Page .. 3
Tag Reference ... 7

The Placeholder Tag .. 7
The ComponentInstance Tag ... 8
The Property Tag ... 8

6. Writing JavaScript Code .. 9
Using the JavaScript Code Editor .. 9
Code Example 1 .. 11
Code Example 2 .. 11
Code Example 3 .. 12

7. JavaScript Code Reference .. 12
Custom JavaScript Functions .. 12
Custom JavaScript Variables ... 16
Data Layer Variables ... 17

8. JavaScript Code Guidelines and Hints ... 24
Custom JavaScript Component Placement ... 24
Custom JavaScript and jQuery .. 24

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 2

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

1. Functional Description

The Custom JavaScript feature makes it possible for airlines to add functionality to IBE/storefront pages

beyond the functionality provided by the standard components. For example, custom JavaScript can be used

to add a custom thank you message based on the destination that the user books, to add links to online

resources (such as Wikitravel) that can give users more information about their destinations, or to load an

analytical package.

For the JavaScript coder, the custom JavaScript feature provides a number of useful functions and variables,

such as WhiteLabel.getIbeData(), that make it easy to access any data that appears on the page and

work with it in custom scripts.

Note Two distinct tasks must be performed to add custom JavaScript to a page, each requiring a different
set of skills. The business analyst or delivery manager faced with a request for custom JavaScript
support will want to understand the two tasks and the two skill sets required to perform them:

1. Adding a custom JavaScript component to the page's definition: this must be done before the JavaScript is
written. This is a fairly technical task that requires a thorough understanding of the IBE’s internals
(someone who is able to work with the XML representation of the page definition), and will probably be
performed by a Sabre Migrations developer.

2. Writing JavaScript code. After the custom component has been added to the page definition, the
JavaScript programmer can access the JavaScript file through a code editor in STAN. The primary skill
required for this task is JavaScript coding, but some knowledge of the IBE’s component model will
certainly help.

It is certainly possible for one person to have both skills, but the roles are typically handled by different people:

if an airline wants to add some custom JavaScript to a page, the Sabre Migrations team can add the

component and the airline can then add, test, edit, and revise the JavaScript code through STAN.

Even when the two tasks are performed by two people, the JavaScript coder should be aware of the

relationship between the JavaScript code and the component definition, because the nature of custom

JavaScript as a component determines how it is executed when the page is loaded and how it interacts with

data on the page. The JavaScript coder will want to be comfortable with these aspects of custom JavaScript

components to ensure that the component behaves as expected. Similarly, the business analyst or delivery

manager will want to understand the JavaScript coder’s needs and communicate them to the XML developer

so that the component is defined correctly.

As mentioned already, to implement custom JavaScript code, a custom JavaScript component must be added

to the page. Components—and this includes both standard components and custom components-are the way

that units of functionality are packaged and included on pages. Creating a custom component simply adds a

new unit of functionality, one that is equivalent in a page's structure to the standard components already on the

page. In other words, once a custom JavaScript component is added, it is the equivalent of such standard

components as the progress bar and the login component. The following illustration shows how a set of

components is assembled into a page and delivered to the user, demonstrating why packaging your custom

JavaScript as a custom component is necessary to have it delivered as a part of a page:

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 3

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

This document has separate sections for the two main tasks.

2. Feature Activation

There is no activation for this feature. As soon as you define a custom JavaScript component it becomes part

of the page.

3. Feature Configuration

There is no overall configuration for this feature. Each custom JavaScript component is configured in the XML

tags that define it.

4. Feature Translations

N/A

5. Adding a Custom JavaScript Component to a Page

The structure of an IBE storefront can be exported from the database to an XML representation. Part of this

XML representation is shown in the following example:

<?xml version="1.0" encoding="UTF-8" ?>

<ConfigurationRequest storefront="VAVA" create="true">

 <ImportFlows>

 <Flow clode="BOOKING">

 <Page rows="4" columns="2" name="AIR_SEARCH_PAGE">

 ...

 <Page rows="4" columns="2" name="CALENDAR_PAGE">

 ...

 <Page rows="4" columns="2" name="AIR_SELECT_PAGE">

 ...

 <Page rows="4" columns="2" name="PASSENGERS_PAGE">

 <Placeholder topRightY="4" topRightX="2" placeholderId="cnt_1" form="false" bottomLeftY="3"

 bottomLeftX="0">

 <ComponentInstance initialized="true" initialState="header" form="false"

 componentId="null_1" componentCode="scc"/>

 </Placeholder>

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 4

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

 <Placeholder topRightY="3" topRightX="1" placeholderId="cnt_2" form="true" bottomLeftY="1"

 bottomLeftX="0">

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="prbar_1" componentCode="prbar"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="flomes_1" componentCode="flomes"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="psng_1" componentCode="psng"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="cic_1" componentCode="cic"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="cac_1" componentCode="cac"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="sbmt_1" componentCode="sbmt">

 <Property key="component.sbmt.type">passengers</Property>

 </ComponentInstance>

 </Placeholder>

 <Placeholder topRightY="3" topRightX="2" placeholderId="cnt_3" form="false" bottomLeftY="2"

 bottomLeftX="1">

 <ComponentInstance initialized="true" initialState="initialized" form="true"

 componentId="login_1" componentCode="login"/>

 <Property key="component.login.logout.redirect.force">false</Property>

 </ComponentInstance>

 </Placeholder>

 ...

 </Page>

 …

 </Flow>

 </ImportFlows>

</ConfigurationRequest>

</xml>

The example shows the definition of the Passengers page and several of the standard components that

appear on it, including the progress bar (component id=prbar) and the login component (component

id=login_1). Notice the hierarchical nature of these definitions: the storefront contains flows, flows contain

pages, pages contain placeholders, and placeholders contain component instances.

To add a custom JavaScript component to a page you add tags that describe the new component. In most

cases, custom JavaScript components should be the last components on the page, inside the last placeholder

on the page. Custom JavaScript components typically access data from other components on the page, so

you want your custom JavaScript to execute after the data-holding components on the page have been

rendered, when their data will actually be available to your script.

The next example shows the same storefront, with tags added to define a custom JavaScript component:

<?xml version="1.0" encoding="UTF-8" ?>

<ConfigurationRequest storefront="VAVA" create="true">

 <ImportFlows>

 <Flow clode="BOOKING">

 <Page rows="4" columns="2" name="AIR_SEARCH_PAGE">

 …

 <Page rows="4" columns="2" name="CALENDAR_PAGE">

 …

 <Page rows="4" columns="2" name="AIR_SELECT_PAGE">

 …

 <Page rows="4" columns="2" name="PASSENGERS_PAGE">

 <Placeholder topRightY="4" topRightX="2" placeholderId="cnt_1" form="false" bottomLeftY="3"

 bottomLeftX="0">

 <ComponentInstance initialized="true" initialState="header" form="false"

 componentId="null_1" componentCode="scc"/>

 </Placeholder>

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 5

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

 <Placeholder topRightY="3" topRightX="1" placeholderId="cnt_2" form="true" bottomLeftY="1"

 bottomLeftX="0">

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="prbar_1" componentCode="prbar"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="flomes_1" componentCode="flomes"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="psng_1" componentCode="psng"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="cic_1" componentCode="cic"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="cac_1" componentCode="cac"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="sbmt_1" componentCode="sbmt">

 <Property key="component.sbmt.type">passengers</Property>

 </ComponentInstance>

 …

 </Placeholder>

 <Placeholder topRightY="3" topRightX="2" placeholderId="cnt_3" form="false" bottomLeftY="2"

 bottomLeftX="1">

 <ComponentInstance initialized="true" initialState="initialized" form="true"

 componentId="login_1" componentCode="login"/>

 <Property key="component.login.logout.redirect.force">false</Property>

 </ComponentInstance>

 …

 <ComponentInstance initialized="true" initialState="script" form="false"

 componentId="scc_1" componentCode="scc">

 <Property key="component.scc.script.path">script.js</Property>

 <Property key="component.scc.script.functionName">customScript</Property>

 </ComponentInstance>

 </Placeholder>

 </Page>

 …

 </Flow>

 </ImportFlows>

</ConfigurationRequest>

</xml>

Looking at the new tags, we see that it took two tags to define the custom JavaScript component, a

<ComponentInstance> tag and two instances of the <Property> tag. Among the attribute values for these

tags, the following are the most significant:

● The component instance's initialState attribute; for a custom JavaScript component this must be

script.

● The component instance's componentId attribute; this is a unique ID for the new component. Try to

use a meaningful name.

● The component instance's componentCode attribute; for a custom JavaScript component this must

be scc (for “static content component”).

● The first instance of the <property> tag sets the component.scc.script.path key. This is the

name that will be used for the component's JavaScript file. The default name is script.js.

● The second instance of the <property> tag sets the component.scc.script.functionName

key. This is the name of the function that will be called when the component is loaded. The default

name is customScript.

For information on the other attributes see the Tag Reference section.

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 6

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

Note that this example used the default values for the two property keys. It is possible to add multiple custom

JavaScript components and use the default values for all of them. The result is a set of components that share

one JavaScript file and one called function, which requires logic that branches according to the current page.

For an example of this, see Code Example 1.

A more efficient (and generally recommended) practice is shown in the next example. It has two separate

custom JavaScript components, and the two components not only have different component IDs (which is

required), but they have different value for the script.path and script.functionName keys. The result

is two different JavaScript files, each with its own function. In a storefront with several custom JavaScript

components, which can appear on multiple pages in different combinations, this method minimizes the amount

of JavaScript code that must be loaded for each page.

<?xml version="1.0" encoding="UTF-8" ?>

<ConfigurationRequest storefront="VAVA" create="true">

 <ImportFlows>

 <Flow clode="BOOKING">

 <Page rows="4" columns="2" name="AIR_SEARCH_PAGE">

 ...

 <Page rows="4" columns="2" name="CALENDAR_PAGE">

 ...

 <Page rows="4" columns="2" name="AIR_SELECT_PAGE">

 ...

 <Page rows="4" columns="2" name="PASSENGERS_PAGE">

 <Placeholder topRightY="4" topRightX="2" placeholderId="cnt_1" form="false" bottomLeftY="3"

 bottomLeftX="0">

 <ComponentInstance initialized="true" initialState="header" form="false"

 componentId="null_1" componentCode="scc"/>

 </Placeholder>

 <Placeholder topRightY="3" topRightX="1" placeholderId="cnt_2" form="true" bottomLeftY="1"

 bottomLeftX="0">

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="prbar_1" componentCode="prbar"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="flomes_1" componentCode="flomes"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="psng_1" componentCode="psng"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="cic_1" componentCode="cic"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="cac_1" componentCode="cac"/>

 <ComponentInstance initialized="true" initialState="initialized" form="false"

 componentId="sbmt_1" componentCode="sbmt">

 <Property key="component.sbmt.type">passengers</Property>

 </ComponentInstance>

 …

 </Placeholder>

 <Placeholder topRightY="3" topRightX="2" placeholderId="cnt_3" form="false" bottomLeftY="2"

 bottomLeftX="1">

 <ComponentInstance initialized="true" initialState="initialized" form="true"

 componentId="login_1" componentCode="login"/>

 <Property key="component.login.logout.redirect.force">false</Property>

 </ComponentInstance>

 …

 <ComponentInstance initialized="true" initialState="script" form="false"

 componentId="scc_1" componentCode="scc">

 <Property key="component.scc.script.path">scc1.js</Property>

 <Property key="component.scc.script.functionName">customScript1</Property>

 </ComponentInstance>

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 7

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

 <ComponentInstance initialized="true" initialState="script" form="false"

 componentId="scc_2" componentCode="scc">

 <Property key="component.scc.script.path">scc2.js</Property>

 <Property key="component.scc.script.functionName">customScript2</Property>

 </ComponentInstance>

 </Placeholder>

 </Page>

 …

 </Flow>

 </ImportFlows>

</ConfigurationRequest>

</xml>

Summarizing the steps for this task, we have:

1. Determine the number of custom components for a page, and their component IDs.

2. Decide whether you are going to use a separate .js file for each component (recommended), or a single

.js file with logic that branches according to the page it appears on. Decide on the names to be used for

the .js files.

3. Export the current XML definition for the storefront you are working with.

4. Add the tags that define the custom JavaScript component, normally as the last component instances on
the page.

5. Re-import the storefront definition. After re-importing, the custom JavaScript component will be visible in
STAN.

Tag Reference

This section provides detailed information about the XML tags that define a custom JavaScript component.

The Placeholder Tag

Components, including custom JavaScript components, are defined inside placeholder tags, which locate a

component or group of components on a page. You typically place custom JavaScript components as the last

component instances in the last placeholder on the page, in which case you don’t change any of the

placeholder’s attributes.

The placeholder tag has the following attributes:

<Placeholder> Tag Attribute Meaning Values

bottomLeftX Locates the placeholder on the

page, relative to the page’s bottom

left

bottomLeftY Locates the placeholder on the

page, relative to the page’s bottom

left

form Indicates whether the placeholder

contains a form

true\\false

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 8

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

placeHolderId A unique Id for the placeholder. string

topRightX Locates the placeholder on the

page, relative to the page’s top

right

topRightY Locates the placeholder on the

page, relative to the page’s top

right

The ComponentInstance Tag

The componentInstance tag defines a component. The table shows the attributes and values to use for custom

JavaScript components.

<Component Instance> Tag

Attribute

Meaning Values

componentCode Identifies the type of the

component.

For custom JavaScript

components, this should always be

scc, for "static content

component."

componentId A unique identifier for each

component. For custom JavaScript

components, use meaningful IDs,

such as scc_1.

string

initialized For custom JavaScript

components, this should always be

true

true\\false

initialState For custom JavaScript

components, this should always be

script.

script

form Indicates whether the component

is a form. For custom JavaScript

components, this should always be

false.

true\\false

The Property Tag

The property tag provides additional information about a components. A custom JavaScript component

requires two instances of this tag, to define the two configuration keys:

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 9

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

<Property> Tag Key Attribute Meaning Values

component.scc.script.path The name of the file

for the component's

JavaScript code.

The default value is

script.js; as

discussed above, if

you supply different

filenames for each

component, each

component will have

its own .js file. Or you

can supply a single file

name for all of your

custom JavaScript,

and then branch the

logic inside that file

according to the

context.

xxxx.js

component.scc.script.functionName The name of the

JavaScript function to

be executed when the

component is

rendered.

The default value is

customScript

A valid JavaScript

function name

6. Writing JavaScript Code

Once you have defined a component, the component will become visible in STAN, and you can use STAN to

add and edit the JavaScript code.

Using the JavaScript Code Editor

To add or edit custom JavaScript code:

1. In STAN, click the Configure Storefront tab.

2. In the pop-up menu, click Branding.

3. In the Files Library pane, click Javascript. At this point, the right pane will become the Javascript Upload
pane, and all of the custom JavaScript component instances for the storefront will be listed. If the list is
long, you can use the Flow and Page controls to filter the list.

4. The component instances are identified by their component IDs (the IDs assigned in the XML). These IDs
are listed in the Name column.

5. Notice the buttons at the top of the Javascript Upload pane. These buttons perform basic editing functions:
View, Revert, Clear, Download, and Replace. The buttons give you access to the file specified in the XML

with the component.scc.script.path key.

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 10

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

STAN: List of JavaScript Components

6. To work with a JavaScript file, locate the component instance you want to work with. Click the check box in
the Selected column and click one of the editing function buttons.

7. For example, clicking the View button opens the JavaScript file for review:

STAN: JavaScript in open JavaScript Editor

8. Or, clicking the Replace button opens this dialog which lets you upload a local file. You can develop locally
with your preferred text editor, then use this feature to upload and test. (In this example, the XML definition

specified the file name for this component instance as script.js, so the upload action will automatically

rename any file you upload to script.js.)

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 11

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

Code Example 1

This example shows you how to write the called function if you are using a single JavaScript file to support

multiple component instances. The logic in this example uses the sabre.config.pageCode to get the

current page, and then branches based on the current page.

var customScript = function (node) {

 var pageCode = sabre.config.pageCode;

 if (pageCode === 'PURCHASE_PAGE') {

 purchasePageScript(node);

 } else if (pageCode === 'CONFIRMATION_PAGE') {

 confirmationPageScript(node);

 }

};

function purchasePageScript(node) {

 /* custom logic only for purchase page */

}

function confirmationPageScript(node) {

 /* custom logic only for confirmation page */

}

Code Example 2

This example shows the called function from a JavaScript file that supports only a single component instance.

var customScript = function (node) {

 var journeySpan = WhiteLabel.getIbeData().journeySpan;

 var content = '';

 if (journeySpan === 'ONE_WAY') {

 content = '<a class="translate" wl:translate="" href="' + sabre.config.global.applicationUrl

 + '">Why fly only one way? Book return journey';

 }

 node.innerHTML = content;

};

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 12

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

Code Example 3

This example shows code that collects a set of data about passenger activity on the current IBE page and

passes it back to the airline’s Google Tag Manager account. The airline then accesses the accumulated data

through its GTM account for analytical purposes. To use this code, create a custom JavaScript component and

add it to each IBE page from which the airline wants to collect data. (This will typically be all pages.)

Note that the developer implementing this code should replace the variable GTM-XXXX in the snippet with the

specific airline’s GTM account number before the code is deployed.

<!-- Google Tag Manager -->

<noscript><iframe src="//www.googletagmanager.com/ns.html?id=GTM-XXXX"

height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript>

<script>

 (function(w,d,s,l,i){w[l]=w[l]||[];

 w[l].push({'gtm.start':new Date().getTime(),event:'gtm.js'});

 var f=d.getElementsByTagName(s)[0],j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';

 j.async=true;j.src='//www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);

 })

 (window,document,'script','dataLayer','GTM-XXXX');

</script>

<!-- End Google Tag Manager -->

At runtime, the snippet acts as follows:

1. Makes a call to the airlines Google Tag Manager account and downloads several macros stored there that
define the data to be collected.

2. Executes the macros to collect the data.

3. Returns the collected data to the airline’s GTM account.

The data defined in the macros and returned to the airline’s account is represented by the dataLayer variable

in the snippet. The data items collected and returned in the data layer are listed in the JavaScript Code

Reference section.

7. JavaScript Code Reference

This section provides detail about the variables and functions introduced with the custom JavaScript feature.

Custom JavaScript Functions

Useful functions that can be called in custom JavaScript

Function Name Description Syntax

WhiteLabel.getIbeData() Returns any of

the Sabre

exposed

variables listed

in the following

var name = WhiteLabel.getIbeData()

or

var name =

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 13

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

table WhiteLabel.getIbeData().sabreExposedVariable

Sabre Exposed

Variables

Descriptio

n

Variable Name Format Example

Pax Info

(logged in user):

User's

unique sign-

in data

loggedUser Object

prefix Title prefix Alpha MR

First name First name firstName Alpha JOHN

last name Last name lastName Alpha DOE

tier level Frequent

traveler tier

tierLevel Alpha-numeric

FF Number Passenger

frequent

traveler

number

ffNumber Alpha-numeric 121ab31

emails Passenger

email

emails ABC@SABRE.COM

Journey span Type of

booking

journeySpan Predefined:

ONE_WAY

ROUND_TRIP

MULTI_CITY

ONE_WAY

Cabin Class Seated

cabin

cabinClass Predefined:

ECONOMY

PREMIUM_ECONO

MY

BUSINESS

FIRST

ECONOMY

Promo code Promotional

code

promoCode Predefined

Air search itinerary

parts:

Itinerary itineraryParts Object

departure airport Departure

city

departureAirport 3 Letter Airport Code MEL

arrival airport Arrival city arrivalAirport 3 Letter Airport Code JFK

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 14

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

date Travel date date mm/dd/yyyy

hh:mm:ss

2012/09/04 00:00:00

Redemption flag Redemption

code

redemption Predefined Redemption

Passenger type map Type of

passenger

passengers Object { ADT: 2, CHD: 1 }

Currency Currency of

reserved

fare

currency Predefined USD

Language Language

and country

code

(examples:

en_US,

en_GB,

fr_FR,

ar_AE, etc.)

language Predefined en_US

Selected offers: Optional

offers

selectedOffers Object

fare amount

(monetary)

Base fare

amount

fareAmount Numeric 108.180

Branded fare itinerary

part:

Segments: Itinerary

segment(s)

segments Predefined

Departure date Departure

date

departure mm/dd/yyyy

hh:mm:ss

2012/09/04 06:00:00

arrival date Arrival date arrival mm/dd/yyyy

hh:mm:ss

2012/09/04 07:30:00

departure airport Departure

city

 departureAirport 3 Letter Airport Code JFK

arrival airport Arrival city arrivalAirport 3 Letter Airport Code MEL

flight number Flight

number

flightNumber Numeric 800

airline code Marketing

carrier

airlineCode Alpha-numeric VA

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 15

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

operating airline code Operating

carrier

operatingAirlineCode Alpha-numeric VA

cabin class Seated

cabin

cabinClass Predefined ECONOMY

brand ID Name of

Brand

brandId Predefined EP

booking class Fare class bookingClass Alpha T

fare basis Fare code fareBasis Alpha-numeric TZDSV

next day indicator Change of

day during

flight

nextDayIndicator Boolean false

Total (monetary) Total

amount

total Numeric 108.180

Passengers info: Passenger

details

passengersInfo Object

prefix Title prefix Alpha MR

first name First name firstName Alpha JOHN

last name name lastName Alpha DOE

tier level Frequent

traveler tier

tierLevel Alpha-numeric

FF Number Passenger

frequent

traveler

number

ffNumber Alpha-numeric 121ab31

emails Passenger

email

emails ABC@SABRE.COM

Insurance code Travel

insurance

insuranceCode Alpha-numeric NO

Selected ancillaries

map

Optional

items for

sale

selectedAncillariesPe

rPaxIndex

Object

code code Predefined 0CC

prices prices Object

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 16

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

Travel part: travelPart Object

origin Origination origin 3 Letter Airport Code JFK

destination Destination destination 3 Letter Airport Code MEL

type type Predefined:

(SEGMENT /

ITINERARY_PART)

PNR Number Record

locator

pnrNumber Alpha-numeric ABC23D

Remote payment

indicator

 remotePayment Predefined

Reissue type reissueType Predefined

Custom JavaScript Variables

This section lists useful variables that can be accessed in a custom JavaScript.

Variable Name Description Values

node Identifies the custom

JavaScript component’s

container on the rendered

page. You can use this to

access and manipulate the

container’s HTML. For an

example, see Code

Example 2. (When a page

is are rendered, custom

JavaScript components on

the page are rendered as

<div> tags that have id

attributes equal to the

custom component IDs.)

String

sabre.config.pageCode Identifies the current pages,

using one of the codes

listed in the next column

AIR_SEARCH_PAGE

AIR_SELECT_PAGE

PASSENGERS_PAGE

SEATS_PAGE

PURCHASE_PAGE

CONFIRMATION_PAGE

SANDBOX_PAGE

COMPONENT_PREVIEW_PAGE

OFFSITE_PAYMENT_PAGE

ERROR_PAGE

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 17

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

MAINTENANCE_PAGE

MY_BOOKING_PAGE

MY_TRIPS_PAGE

MY_ACCOUNT_PAGE

ACCOUNT_CREATE_PAGE

VIEW_ITINERARY_PAGE

FLIGHT_EXCHANGE_PAGE

FLIGHT_STATUS_PAGE

EXCHANGE_AIR_SEARCH_PAGE

EXCHANGE_AIR_SELECT_PAGE

EXCHANGE_REVIEW_PAGE

EXCHANGE_PAYMENT_PAGE

EXCHANGE_PASSENGERS_PAGE

EXCHANGE_SEATS_PAGE

EXCHANGE_CONFIRMATION_PAGE

CANCEL_REFUND_REFUND_PAGE

CANCEL_REFUND_CONFIRMATION_PAGE

EXCHANGE_ERROR_REDIRECT

ANCILLARY_PAGE

CALENDAR_PAGE

CHANGE_PAX_DETAILS_PAGE

EXCHANGE_ANCILLARY_PAGE

UPGRADE_ANCILLARY_PAGE

UPGRADE_SEATS_PAGE

UPGRADE_PURCHASE_PAGE

UPGRADE_CONFIRMATION_PAGE

Data Layer Variables

The first table lists items that are collected on all IBE pages.

Data Layer Variable Name Variable Description Data Format/Example

PageName
Name of the SSW/IBE page
from which the data was
collected.

SiteLanguage
Language used on the
page from which the data
was collected.

FlowType

The IBE booking flow from
which the data was
collected.

Values:
BOOKING
REDEMPTION
EXCHANGE
UPGRADE
ANCILLARIES_MTO
SINGLE_PAGES
CHECK_IN

Storefront
Name of the storefront from
which the data was
collected

Depends on storefront codes established
by airline.

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 18

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

Data Layer Variable Name Variable Description Data Format/Example

BuildNumber
Build number of the page
from which the data was
collected

PromoCode
CAT5 or promo code
entered by passenger into
Promotional Code field.

ErrorTextKey

Any text key(s) displayed to
the passenger, such as
error messages, on the
page from which the data
was collected.

FFPLoggedIn
Frequent Flyer account
number, if the passenger is
logged in.

FFPFields

Values entered into FFP
fields on passenger details
page separated by | if more
than one is entered.

Values separated by the | character.

DateUTC
The server date when the
data was collected in UTC.

YYYYMMDD

TimeUTC
The server time when that
data was collected in UTC.

HHMMSS

ClientDateUTC
The client (the passenger’s
browser) date when the
data was collected in UTC.

YYYYMMDD

ClientTimeUTC
The client (the passenger’s
browser) time when the
data was collected in UTC.

HHMMSS

PNR PNR The PNR’s ID code

Currency
The ISO 4217 3 letter
currency code for the
currency of the transaction.

AED, USD, etc.

TotalAmount
The total amount in the
passenger’s shopping cart.

Integer value

Product Level

FlightOND

The origin and destination
of the passenger’s itinerary
(for multicity or open jaw
itineraries there will be
several pairs). Each pair is
separated from the others
by -.

Each origin destination pair is
represented by colon separated string:
O:D
To describe multi-city or open jaw
itineraries, multiple pairs are used:
O1:D1-D2:O1, or
O1:D1-O2:D2-O3:D3-O4:D4
For example:
LHR:AUH or
LHR:AUH-MCT:SYD, or
LHR:SYD-BNE:SIN-SIN:AUH

FlightCabin

The cabin of the
passenger’s flight.

Values:
ECONOMY
BUSINESS
FIRST

FlightType The type of the passenger’s RETURN

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 19

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

Data Layer Variable Name Variable Description Data Format/Example

flight. ONEWAY
MULTICITY

FlightTripDates

The date(s) of the
passenger’s flight(s).

For one-way:
YYYYMMDD
For roundtrip:
YYYYMMDD:YYYYMMDD
For multi-city:
YYYYMMDD:YYYYMMDD: YYYYMMDD

FlightTripDuration
Number of days between
first departure date and last
arrival date.

Integer value representing the number of
days

FlightPace
Number of days between
day data was collected and
first departure date.

Integer value representing the number of
days

FlightADTPax
Number of adult
passengers in the booking.

Integer value from 0-9.

FlightCHDPax
Number of child
passengers in the booking.

Integer value from 0-9.

FlightINFPax
Number of infant
passengers in the
bookings.

Integer value from 0-9.

FlightPaxTypes
Number of adults, children
and infants.

#ADT:#CHD:#INF

FlightSegmentNumbers

Number of segments of a
flight. (Segments are to be
defined as separated by
point of turnaround or
ARNK.)

Integer value from 1 to 4.

FlightSegment1RBD
The RBD codes of the first
segment in the itinerary.

Alpha values from A to Z, separated by
(:) for each sector of the segment.
For example: Y, or Y:W, or U:V:Y.

FlightSegment1OND

Airport codes of the first
flight segment.

Three-letter airport codes, separated by
colon (:).
For example:
O:D or
O1:O2:D or
O1:O2:O3:D

FlightSegment1OperatingAirline

Operating airlines of the
first flight segment.

Two-letter airline codes, separated by
colon (:) for each sector of the segment.
For example:
SU

FlightSegment1FlightNumber

Flight numbers of the first
flight segment.

Flight numbers, separated by colon (:)
for each sector of the segment.
For example:
123

FlightSegment1DepartDateTime

Departure dates and times
of the first flight segment.

Date time values, separated by colon (:)
for each sector of the segment.
For example:
YYYYMMDDHHMM

FlightSegment1ArriveDateTime
Arrival dates and times of
the first flight segment.

Date time values, separated by colon (:)
for each sector of the segment.
For example:

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 20

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

Data Layer Variable Name Variable Description Data Format/Example

YYYYMMDDHHMM

FlightSegment2RBD
The RBD codes of the
second segment in the
itinerary.

Alpha values from A to Z, separated by
(:) for each sector of the segment.
For example: Y, or Y:W, or U:V:Y.

FlightSegment2OND

Airport codes of the second
flight segment.

Three-letter airport codes, separated by
colon (:).
For example:
O:D or
O1:O2:D or
O1:O2:O3:D

FlightSegment2OperatingAirline

Operating airlines of the
second flight segment.

Two-letter airline codes, separated by
colon (:) for each sector of the segment.
For example:
SU

FlightSegment2FlightNumber

Flight numbers of the
second flight segment.

Flight numbers, separated by colon (:)
for each sector of the segment.
For example:
123

FlightSegment2DepartDateTime

Departure dates and times
of the second flight
segment.

Date time values, separated by colon (:)
for each sector of the segment.
For example:
YYYYMMDDHHMM

FlightSegment2ArriveDateTime

Arrival dates and times of
the second flight segment.

Date time values, separated by colon (:)
for each sector of the segment.
For example:
YYYYMMDDHHMM

FlightSegment3RBD
RBDs of the third flight
segment.

Alpha values from A to Z, separated by
(:) for each sector of the segment.
For example: Y, or Y:W, or U:V:Y.

FlightSegment3OND

Airport codes of the third
flight segment.

Three-letter airport codes, separated by
colon (:).
For example:
O:D or
O1:O2:D or
O1:O2:O3:D

FlightSegment3OperatingAirline

Operating airlines of the
third flight segment.

Two-letter airline codes, separated by
colon (:) for each sector of the segment.
For example:
SU

FlightSegment3FlightNumber

Flight numbers of the third
flight segment.

Flight numbers, separated by colon (:)
for each sector of the segment.
For example:
123

FlightSegment3DepartDateTime

Departure dates and times
of the third flight segment.

Date time values, separated by colon (:)
for each sector of the segment.
For example:
YYYYMMDDHHMM

FlightSegment3ArriveDateTime
Arrival dates and times of
the third flight segment.

Date time values, separated by colon (:)
for each sector of the segment.
For example:

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 21

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

Data Layer Variable Name Variable Description Data Format/Example

YYYYMMDDHHMM

FlightSegment4RBD
RBDs of the fourth flight
segment.

Alpha values from A to Z, separated by
(:) for each sector of the segment.
For example: Y, or Y:W, or U:V:Y.

FlightSegment4OND

Airport codes of the fourth
flight segment.

Three-letter airport codes, separated by
colon (:).
For example:
O:D or
O1:O2:D or
O1:O2:O3:D

FlightSegment4OperatingAirline

Operating airlines of the
fourth flight segment.

Two-letter airline codes, separated by
colon (:) for each sector of the segment.
For example:
SU

FlightSegment4FlightNumber

Flight numbers of the fourth
flight segment.

Flight numbers, separated by colon (:)
for each sector of the segment.
For example:
123

FlightSegment4DepartDateTime

Departure dates and times
of the fourth flight segment.

Date time values, separated by colon (:)
for each sector of the segment.
For example:
YYYYMMDDHHMM

FlightSegment4ArriveDateTime

Arrival dates and times of
the fourth flight segment.

Date time values, separated by colon (:)
for each sector of the segment.
For example:
YYYYMMDDHHMM

Product Flight

ProductFlightSKU

Constructed by
concatenating the following:
the number of pax types,
the RBD codes, operating
airline codes and flight
numbers, flight dates and
times and the origins and
destinations of each
segment.

Sequence of codes. Main items
separated by |, segments separated by -,
and within a segment, sectors are
separated by :
For example:
One-way, for two adults and one child,
AUH to LHR:
2ADT:1CHD:0INF|W-W|WW
123|201308310235|AUH:LHR
Round-trip, for one adult and one infant,
AUH to LHR and back:
1ADT:0CHD:1INF|W-W|WW 123-WW
124|201308311335-
201309130915|AUH:LHR-LHR:AUH
One way, for two adults and one child,
DFW to MCT:
2ADT:1CHD:0INF|V:U:Y|WW001:WW00
2:WW003|201310271630:20131027210
0:201310290220|DFW:ORD:AUH:MCT

ProductFlightName

Flight O&D and Cabin. Concatenation of flight O and D and
cabin class. For example:
BUSINESS LHR-AUH
ECONOMY LHR-AUH-MCT-SYD

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 22

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

Data Layer Variable Name Variable Description Data Format/Example

ProductFlightCategory Flight Flight

ProductFlightAmount
Total amount of flight
product, including taxes but
excluding all ancillaries.

Numeric amount, in the currency
specified in the Currency variable.

Product Extra Baggage

ProductBaggageSKU

Merchandising codes for
any baggage ancillaries
selected by the passenger.

Concatenation of baggage
merchandising codes r, separated by |.
For example:
BagCode1|BagCode2

ProductBaggageName
Identifier for baggage
products

A string literal that identifies the baggage
product:
BAGGAGE

ProductBaggageCategory
Identifier for the ancillary
product category

A string literal that identifies the ancillary
product category:
ANCILLARY

ProductBaggageAmount

Total amount for the
selected baggage product.

Total for products in the baggage
category. A numeric amount, in the
currency specified in the Currency
variable.

Product Seat

ProductSeatSKU

SKU for the seat/seats
selected by the passenger

Concatenation of the selected seat
numbers separated by the | character.
For example:
SeatNumber1|SeatNumber2

ProductSeatName
Identifier for seat products A string literal that identifies the seat

product:
SEAT

ProductSeatCategory
Identifier for the ancillary
product category

A string literal that identifies the ancillary
product category:
ANCILLARY

ProductSeatAmount

Total amount for the
selected seat product.

Total amount for products in the seat
category selected by the passenger. A
numeric value, in the currency specified
in the Currency variable.

Product Carbon Offset

ProductCarbonOffsetSKU

SKU for the carbon
offset/offsets selected by
the passenger

Concatenation of Carbon Offset codes
separated by the | character. For
example:
CarbonOffsetCode1|CarbonOffsetCode2

ProductCarbonOffsetName
Carbon Offset A string literal that identifies the carbon

offset product:
CARBON OFFSET

ProductCarbonOffsetCategory
Identifier for the ancillary
product category

A string literal that identifies the ancillary
product category:
ANCILLARY

ProductCarbonOffsetAmount

Total amount of carbon
offset product.

Total amount for products in the carbon
offset category selected by the
passenger. A numeric value, in the
currency specified in the Currency
variable.

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 23

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

The second table lists additional variables collected on the Confirmation pages (CONFIRMATION_PAGE,

EXCHANGE_CONFIRMATION_PAGE, UPGRADE_CONFIRMATION_PAGE, and

ANCILLARIES_MTO_CONFIRMATION_PAGE).

Variable Name Description Data Format/Example

Transaction Data

transactionId Unique transaction identifier A string literal: PNR

transactionDate Date of transaction UTC date

transactionAffiliation Partner or store
Storefront code, depends on storefronts
set up by airline.

transactionTotal
Total value of the
transaction

Numeric amount

transactionTax
Tax amount for the
transaction

Numeric amount

transactionPaymentType Payment type
A string identifying the FOP used by the
passenger.

transactionCurrency Currency of the transaction A currency code.

transactionPromoCode

Discount or promotion
codes used by the
passenger

A string or strings (entered by the
passenger, from promo codes created by
the airline).

transactionProducts
List of items purchased in
the transaction

Array of product identifiers.

TransactionProduct Data

sku Product SKU

A string identifying one of the following,
as defined above, depending on the
product:
the ProductFlightSKU
the ProductBaggageSKU
the ProductSeatSKU
the ProductCarbonOffsetSKU

name Product name

A string specifying one of the following,
as defined above, depending on the
product:
the ProductFlightName
the ProductBaggageName
the ProductSeatName
the ProductCarbonOffsetName

category Product category

A string specifying one of the following,
as defined above, depending on the
product:
the ProductFlightCategory
the ProductBaggageCategory
the ProductSeatCategory
the ProductCarbonOffsetCategory

price Unit price

A numeric value corresponding to one of
the following, as defined above,
depending on the product:
ProductFlightAmount
ProductBaggageAmount
ProductSeatAmount
ProductCarbonOffsetAmount

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 24

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

Variable Name Description Data Format/Example

quantity Number of items Always 1

8. JavaScript Code Guidelines and Hints

Custom JavaScript Component Placement

The placement of custom JavaScript components on a page flow can affect the custom script’s ability to

access page variables. If a custom script is loaded before some other component that holds data value, the

script will not be able to access the data. The most reliable way to avoid this problem is to place the custom

JavaScript component as the last component in the page flow.

Custom JavaScript and jQuery

If you are writing custom JavaScript that uses jQuery, you need to explicitly load jQuery. There are two

possible ways of doing this. The first loads both jQuery and the custom script from some external source,

similar to what is done in the following example:

var customScript = function(node) {
//jQuery
 var jquery = document.createElement('script'); jquery.type = 'text/javascript';
 jquery.src = 'https://www.domain.com/…/jquery-1.7.2.min.js';
 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(jquery, s);
//external script
 var customScript = document.createElement('script'); customScript.type = 'text/javascript';
 customScript.src = 'https://www.domain.com/…/custom.js';
 var s = document.getElementsByTagName('script')[0]; s.parentNode.appendChild(customScript, s);

};

The second approach, which is recommended, is to load jQuery and execute the custom JavaScript in a

callback after jQuery has been loaded:

var customScript = function(node) {

 function loadScript(url, callback)
{

 var head = document.getElementsByTagName('head')[0];
 var script = document.createElement('script');
 script.type = 'text/javascript';
 script.src = url;
 script.onreadystatechange = callback;
 script.onload = callback;
 head.appendChild(script);
}

var customCode = function() {
 // ******************* insert code here ***************************

Feature Brief -- Custom Javascript

SabreSonic Web v2012.2

Confidential & Proprietary: Sabre Holdings Page 25

DO NOT EDIT WITHOUT PERMISSION (INTERNAL DISTRIBUTION ONLY)

 function someCustomFunction() {

 …
}
$(document).ready(someCustomFunction);
 //**
};

loadScript("https://www.domain.com/.../jquery-1.7.2.min.js", customCode);
};

https://www.domain.com/.../jquery-1.7.2.min.js

